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Abstract

Background: Walking is a fundamental part of living, and its importance is not limited by age or medical status.
Reduced walking speed (WS), or gait velocity, is a sign of advancing age, various disease states, cognitive
impairment, mental illness and early mortality. Activity levels, as defined in the literature as “daily step count” (DSC),
is also a relevant measure of health status. A deterioration in our walking metrics, such as reduced WS and DSC, is
associated with poor health outcomes. These objective measures are of such importance, that walking speed has
been dubbed “the 6th vital sign”. We report a new objective measure that scores walking using the relevant
metrics of walking speed and daily step count, into an easy-to-understand score from 0 (nil mobility) to 100
(excellent mobility), termed the Simplified Mobility Score (SMoS™). We have provided equal weighting to walking
speed and daily step count, using a simple algorithm to score each metric out of 50.

Methods: Gait data was collected from 182 patients presenting to a tertiary hospital spinal unit with complaints of
pain and reduced mobility. Walking speed was measured from a timed walk along an unobstructed pathway. Daily
step count information was obtained from patients who had enabled step count tracking on their devices. The
SMoS of the sample group were compared to expected population values calculated from the literature using 2-
tailed Z tests.

Results: There were significantly reduced SMoS in patients who presented to the spinal unit than those expected
at each age group for both genders, except for the 50–59 age bracket where no statistically significant reduction
was observed. Even lower scores were present in those that went on to have surgical management. There was a
significant correlation of SMoS scores with subjective disability scores such as the Oswestry Disability Index (ODI)
and Visual Analogue Scale (VAS) in this cohort.

Conclusions: The SMoS is a simple and effective scoring tool which is demonstrably altered in spinal patients
across age and gender brackets and correlates well with subjective disability scores. The SMoS has the potential to
be used as a screening tool in primary and specialised care settings.
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Background
Walking is a fundamental part of living, and its import-
ance is not limited by age, race or medical status [1]. It
represents a complex activity requiring the interplay of
the visual, musculoskeletal and neurological systems [2].
As a result, complex measures of walking quality have
been created which utilise 3D motion capture systems or
inertial measurement unit devices to quantify how vari-
ous diseases affect one’s ability to walk. However, studies
have overlooked the far simpler and more available
smart devices most patients carry which provide limited
data regarding day-to-day walking quality.
Numerous metrics have been described to assess gait,

such as walking speed, cadence and stride/step length.
While these metrics have been validated through con-
trolled situations in gait research laboratories, there are
many barriers limiting the applicability of these metrics as
a marker for general health. Notably, few of these metrics
can be feasibly measured outside of the controlled setting
of a gait laboratory. In addition, the measurement of met-
rics such as walking speed, cadence and step length are
confounded by the Hawthorne effect when tested in an
observed setting and therefore are unlikely to represent a
person’s true walking and functional status [3].
On the other hand, quantification of walking by daily

step count (DSC) is still a relevant marker of an individ-
ual’s physical activity and is accessible for all patients
who carry smart devices such as smartwatches, fitness
trackers and smartphones. The second measure of a pa-
tient’s walking capacity is walking speed (WS), measured
as metres per second (m/s) which is measured by most
activity trackers, fitness watches or smartphones, giving
insight into a patient’s daily walking patterns without
the influence of the Hawthorne effect. Both metrics have
literature backing their importance as measures of gen-
eral health. Reduction in WS is a key characteristic of
ageing and frailty [4], as well as a predictor of falls [5], a
finding in many neurological diseases [1, 6] and a pre-
dictor of mortality regardless of age [7]. Middleton, Fritz
and Lusardi [2] proposed WS as the sixth functional
vital sign, with a speed of over 1.35 m/s usually being as-
sociated with complete functional independence. Con-
versely, increasing daily activity, measured by DSC, is
linked to lower all-cause mortality by reducing the inci-
dence of metabolic syndrome and related diseases [8]; it
is itself impacted in many disease states. Typically, a
DSC of 10,000 or above indicates an “active” individual
who is able to engage in the necessary amount of phys-
ical activity [9]. A person’s drive to engage in physical

activity is clearly affected by their musculoskeletal and
neurological health. In addition, the psychological and
physiological burden of other illnesses, such as cancer
[10] and cardiovascular disease [8], has been demon-
strated to reduce activity as measured by DSC. Serious
mental illness, especially depression, is associated with
slower WS and physical activity (reflected in a low DSC)
compared to the general population [11]. Poor lifestyle
behaviours, side effects of psychoactive medication, and
the impact of mental illness on motivation are all con-
tributing factors to a reduction in gait metrics [12].
Wearable devices can act as a supporting tool to encour-
age fitness in people with mental illness through self-
monitoring, encouragement and lifestyle coaching [13].
An objective assessment of walking would be of sig-

nificant benefit for physicians to monitor a patient’s
overall health, in conjunction with other routine health
metrics and vital signs. Objective outcome assessments
overcome limitations of subjective; patient-reported out-
come measures, which suffer from poor reliability; recall
and reporting bias [14]; and a lack of capacity for con-
tinuous assessment [15]. The availability of a quick and
easy tool, which is objective and collected with minimal
intrusion to the patient’s life to avoid bias from the
Hawthorne effect, would help clinicians to rapidly
screen, using a single score, a patient’s general health
status. We propose a simple objective metric that com-
bines WS and DSC which may act as a framework for
objective assessment of pre- and post-intervention out-
come and recovery, following various physical medical
mental health or surgical interventions. In addition, such
a score may act as a tool for population and regional
health assessment. The data required to calculate this
metric can be collected from activity trackers [16] built
into fitness watches and smartphones, with some early
reports of devices collecting these metrics in day-to-day
living [17, 18].
Objective monitoring and the use of wearable and

smart devices for data capture of gait metrics have
driven a paradigm shift from the “subjective” to the “ob-
jective” era of patient outcome analysis in the clinical
setting [19]. Simple scores such as the SMoS may assist
the rapid identification of individuals, or indeed popula-
tions, with declining health, facilitating early interven-
tion, which may delay the typical increased healthcare
costs and diminished quality of life associated with age-
ing and frailty. Widespread adoption would also allow
the development of population-based health interven-
tions to improve these metrics on a broader scale.
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This study aims to introduce and test the SMoS in a
sample of patients with spinal pathologies and compare
them to population samples in order to validate the tool
as a simple screening tool for deterioration in walking
quality. Given that walking quality is diminished in a
number of disease states, the experimental group is ex-
pected to have lower SMoS scores across age and gender
strata than the population norms. This will introduce
the SMoS as a simple measure of walking quality that is
quickly and easily obtained from data captured by a pa-
tient’s smart device, thus providing additional clinical in-
formation without sacrificing time.
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Methods
We propose a simple metric, potentially measurable with
smart devices used by most of the population. This
metric, termed the Simplified Mobility Score (SMoS™),
can be measured using the daily step count and walking
speed obtained from smart devices like the Apple
iPhone, Apple Watch, Android devices or similar prod-
ucts. Both gait velocity and step count are given a score
out of 50 using a linear calculation with an upper limit,
calculated as a percentage of the upper limit, and multi-
plied by 50 (Table 1). The sum of the two scores is the
overall SMoS score. The upper limit of 50 was chosen to
delineate those with functional disability from those
without any limitation to their daily physical and

functional activities who would be expected to have no
negative outcomes resulting from impacted gait.
The present study was a retrospective observational

study using a database of 450 consecutive patients (aged
30 and over) presenting for the first time to a single spinal
neurosurgery clinic with pain and/or sensorimotor deficits
between 2017 and 2020. Each patient was consented to
the study and completed a questionnaire with demo-
graphic information and disability scores (ODI, NDI,
VAS). Patients were taken for a timed walk along an un-
obstructed pathway over a self-selected distance (30, 60,
120 or 200 metres) to measure gait velocity. DSC was ob-
tained from their smart device based on the data over the
last month of tracking. Gait data was available for 182 pa-
tients. Patients who had undergone surgery following their
initial consultation but before July 2020 were considered
“surgical”. Patients were excluded if they were unable to
walk independently without a device or human assistant,
and if they were under the age of 18.
The sample data for walking speed and daily step

count were compared to expected population values ob-
tained from large population studies measuring walking
speed (n = 23,111) [4] and daily step count (n = 717,527)
[20]. Two-tailed z-tests were used to test for statistically
significant differences between the sample data and the
population values, with significance defined at p < 0.05.
Subgroup analyses were also performed by age group
and gender. A two-tailed independent sample z-test was
performed to determine whether there was a statistically
significant difference in the mean SMoS score between
patients that underwent surgery and patients that did
not. The Shapiro-Wilk test for normality was performed
to maintain the assumptions of the chosen statistical
test. Pearson’s correlation analysis was used to determine
the association of SMoS with ODI, NDI and VAS scores.
Data was collected and processed using IBM SPSS Sta-
tistics, version 26.

Results
Ninety-two women and 90 men were eligible for ana-
lysis and calculation of their SMoS. The mean age
was 56 years (range 20–88), and 38 (21%) had surgical
intervention for their spinal pathology within the
study period; the average time until surgery was 2
months. The mean ODI was 40 (range 0–98), NDI
was 26 (range 0–68) and VAS was 7 (range 0–10).
Figure 1 displays the population mean of SMoS
within age, gender and pathological subgroups. The
results of statistical analysis are displayed in Table 2.
The mean SMoS for non-operative patients was 62.1

(SD = 22.97) and 50.2 (SD = 21.25) for operative patients.
Operative patients had a mean SMoS that was 11.9 points
lower than non-operative patients (p < 0.0033, 95% CI −
19.88 to − 4.018).

Table 1 Calculation of the SMoS based on the primary gait
metrics of WS and DSC

Walking speed (WS) Daily step count (DSC)

WS (v) Points (A) DSC Points (B)

v < 1.35 m/s (v/1.35) × 50 DSC < 10,000 (DSC/10,000) × 50

v > 1.35 m/s 50 DSC > 10,000 50

SMoS = A + B
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Pearson’s correlation coefficient between SMoS and
ODI, VAS and NDI were − 0.570 (p < .001, r2 = 0.3252),
− 0.561 (p < .001, r2 = 0.314) and − 0.037 (p = 0.855, r2 =
0.001), respectively. This indicates a moderate negative
correlation with ODI and VAS, but no correlation with
NDI.

Discussion
New patients presenting to a spinal surgery clinic dis-
played statistically significantly lower SMoS than ex-
pected from large population data samples and remained
true when subjects were age and gender-matched to
population data. Subgroup analysis revealed that patients

Fig. 1 The mean SMoS scores across age, gender and pathological subgroups. Dotted lines represent the mean values across the groups

Table 2 Statistical analyses for the reduction in SMoS in spine patients compared to expected population values, separated by age
group and gender

Age
group

Population Sample Difference

Mean (± SD) Mean (± SE) n Mean difference (95% CI) P

Total 74.3 ± 3.63 58.7 ± 1.68 182 − 15.6 (− 18.90 to − 12.30) < .001

Male 77.2 ± 9.75 60.0 ± 2.42 90 − 17.2 (− 21.95 to − 12.45) < .001

Female 69.7 ± 8.73 57.0 ± 2.40 92 − 12.7 (− 17.40 to − 8.00) < .001

30–39 75.9 ± 3.90 66.4 ± 4.03 32 − 9.5 (− 17.40 to − 1.60) < .001

Male 78.6 ± 9.59 64.1 ± 5.39 20 − 14.5 (− 25.06 to − 3.94) < .001

Female 71.2 ± 9.20 70.2 ± 6.03 12 − 1.1 (− 12.83 to 10.83) 0.689

40–49 75.1 ± 3.31 63.4 ± 3.84 41 − 11.7 (− 19.23 to − 4.17) < .001

Male 77.5 ± 9.77 59.2 ± 5.39 24 − 18.3 (− 28.86 to − 7.74) < .001

Female 70.9 ± 8.20 68.7 ± 5.09 17 − 2.2 (− 12.18 to 7.78) 0.258

50–59 73.7 ± 4.39 68.8 ± 4.35 30 − 4.8 (− 13.42 to 3.62) 0.348

Male 76.5 ± 9.56 75.2 ± 6.09 14 − 1.3 (− 13.24 to 10.64) 0.465

Female 68.6 ± 9.30 63.3 ± 5.9 16 − 5.3 (− 16.84 to 6.26) 0.023

60–69 68.5 ± 3.49 57.0 ± 3.2 36 − 11.5 (− 17.77 to − 5.23) < .001

Male 74.2 ± 9.71 54.6 ± 4.41 17 − 19.6 (− 28.25 to − 10.95) < .001

Female 64.0 ± 8.50 49.7 ± 4.66 19 − 14.3 (− 23.43 to − 5.17) < .001

70+ 60.4 ± 3.53 46.7 ± 2.42 43 − 13.7 (− 18.45 to − 8.95) < .001

Male 65.0 ± 10.1 49.9 ± 3.25 16 − 15.1 (− 21.47 to − 8.73) < .001

Female 55.5 ± 8.3 44.9 ± 3.33 27 − 10.6 (− 17.13 to − 4.07) < .001

n number of individuals
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who progressed to surgical intervention in the following
3 years had significantly worse SMoS than non-operative
patients. This implies that the SMoS has differentiating
power between patients with advancing disease severity,
from none, to mild (not requiring intervention) to severe
(requiring intervention) within the age and gender strata.
Given the ambiguity of when to surgically intervene in
conditions such as spinal stenosis, the SMoS could be-
come a useful and quick tool in the future which could
provide additional information to aid this decision.
Patients with high SMoS also had much lower physical

disability according to well-established disability scores
such as ODI and VAS, while low SMoS scores predicted
high disability on the subjective measures of ODI and
VAS. This is suggestive of the validity of the SMoS as a
marker of physical disability and is in accordance with
existing literature which suggests both walking speed
and daily activity levels are reduced in the presence of
diseases that affect the neurological and musculoskeletal
systems [1, 6, 21]. While the SMoS should not replace
these measures of disability, it can act as a useful adjunct
to more holistically evaluate these patients.
Musculoskeletal disorders outside of the spine in-

volved in walking, such as knee and hip osteoarthritis,
also result in poor kinematic parameters including re-
duction in walking speed [22, 23]. Given the known as-
sociation of walking quality with functional disability,
and the additional association of walking quality with
disease-specific disability scores in the present study, the
SMoS may also be used to guide functional intervention
by occupational and physiotherapy. The SMoS may also
be used in the long-term monitoring of patient func-
tional and disease status with a lower threshold for
intervention. Given its ease of use and almost universal
availability, there are very few barriers to the implemen-
tation of the SMoS in spinal surgical practice. Future
studies in the fields of geriatrics, orthopaedics, mental
health and other non-surgical neurological disorders will
enhance the uptake of the SMoS as a routine practice as
a clinical screening tool for both individual and
population-based assessment.

Inconsistencies
Notably, patients between 50 and 60 did not demon-
strate a significant reduction in their SMoS compared to
the expected values. Regarding female patients, recent
literature has shown that the age of onset of mechanical
low back pain is later for females than their male coun-
terparts, corroborating findings that mechanical injuries
in the spine appear decades earlier in men than women
[24]. However, women are overrepresented in lower
back pain statistics because of a combination of various
lifelong events, such as childbearing, predisposition to
mechanical instability at the L4/5 disk and hormonal

changes that occur in the mid-50s that may lead to
symptomatic deterioration of the spine. Additionally,
male patients in the 50–59 age bracket demonstrated
significantly higher SMoS than their trend would sug-
gest. There is no evidence suggesting that males experi-
ence a sudden improvement in walking in this decade,
and this is likely an anomalous result due to compara-
tively low sample size in this age bracket, a limitation of
the present study that can be addressed in future studies.
Moreover, NDI did not significantly correlate with SMoS
despite other disability scores having good correlations.
This is likely due to the anatomical implications of a cer-
vical pathology being more likely to result in arm pain
or weakness, while lower back issues tend to cause gait
changes.

Limitations
A limitation of this study is the use of population-based
normative data as open-source, provided by the citizen
science application Argus for age and gender-stratified
DSC information [20]. Hence, our estimation of ex-
pected values of DSC is biased towards mid-high-
income countries with access to smart devices. Addition-
ally, this study assumed homogeneity amongst the vari-
ous countries participating in the Althoff study, an
assumption that was proven incorrect by the study in
question. However, most data samples originated from
the USA and Europe, where the average DSC was con-
sistently 5000–6000 steps/day, giving a reasonable esti-
mate of the expected population values for the patients
in this study. Given the results of the Althoff study, a
reasonable future direction for the SMoS would be simi-
lar trials to this, conducted in regions with a lower (Af-
rica, Middle East, Southeast Asia) or higher (Russia,
China and Scandinavian countries) DSC. Additionally,
measurement of step count and walking speed by any
device is contingent on the device and programme used
to obtain the data. Furthermore, walking speed was mea-
sured from a walking bout in the vicinity of our spinal
neurosurgery clinic, where the Hawthorne effect may
confound results [3]. Although we were unable to ac-
count for this, future developments in smartphones may
routinely measure walking speed using in-built health
applications, allowing for future studies to investigate
the SMoS in the patient’s daily life away from the Haw-
thorne effect. In addition, each patient only underwent
one walking bout, affecting the reliability of our results.
Future studies should investigate the SMoS using mul-
tiple walking bouts per patient. In addition, the accuracy
of DSC may differ between smartphone types, prevent-
ing accurate comparisons of DSC between patients who
use different smartphones. Nonetheless, differences of
even 500 steps per day are unlikely to represent signifi-
cant differences in daily physical activity (approximately
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equal to a 5-min difference in physical activity) [9].
While this is consistent with the SMoS as a general
marker of physical health, future studies using other
smart devices or fitness watches could investigate the
SMoS using more accurate measurements of DSC. Fi-
nally, the cut-off values of 1.35 m/s (for walking speed)
and 10,000 steps/day were based on the available litera-
ture [2, 9], which has been largely centred around popu-
lation groups exhibiting contemporary living standards
such as the USA. While this is likely applicable to our
Australian study population, future studies can inves-
tigate the SMoS in more diverse population groups
and cultures.
Commercial smart devices tend to have low levels of

inaccuracy (3–10%) in step detection [25], but this in-
creases to 40% in distance-based calculations using the
GPS software [26] which the majority of smartphone-
based WS calculations use. This is not the case for other
smart devices or fitness watches. Thus, incorporation of
smartphone-based health data using the SMoS or other-
wise requires a more accurate assessment of WS and
distance-based gait metrics. One potential using the
SMoS is an application which measures step-count as
per normal but uses a smart device’s in-built multiaxial
accelerometer to calculate WS. This could be always
running without significant battery dedication, or could
operate on a reasonable threshold, e.g., only measuring
once more than 10 consecutive steps have occurred and
10 s of activity has elapsed. This would capture longer
walking bouts, giving an idea of a patient’s true func-
tional WS with less battery consumption. It is likely that
several short episodes of data capture to calculate walk-
ing speed will be adequate to provide a mean figure, ra-
ther than attempting to capture the speed of every step
we take as this would be draining on processor and bat-
tery resources, and unnecessary. Notably, the Apple™
smartphones appear to have already implemented some
accelerometer-based measurements, as they display gait
metrics such as asymmetry and stance phases in the in-
built health application.

Conclusion
The detection and quantification of decline and recovery
in physical and mental health status, across a broad
range of pathologies, remains a challenge using a simple
and single health measure, or score. The SMoS promises
to be a tool that relays significant information about the
individual that is easy for any health practitioner to
understand and will assist with a range of healthcare de-
cisions about a patient, while being easy to collect using
readily available devices. Overall, there appears to be no
major drawback to implementing the SMoS as a routine
aspect of clinical evaluation, especially in gait disorders

where it can be used to monitor disease progression and
prognosticate.
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