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Abstract 

Background: Musculoskeletal disorders can contribute to injurious falls and incur significant societal and healthcare 
burdens. Identification of fallers from non-fallers through wearable-based gait analysis can facilitate timely interven-
tion to assist mobility and prevent falls whilst improving care and attention for high fall-risk patients. In this study, we 
use wearable sensor-based gait analysis to introduce a novel variable to assess walking stability in fallers and non-fall-
ers – the Walking Orientation Randomness Metric. The WORM score quantifies the stability, or ‘figure-of-eight’ motion 
of a subject’s trunk during walking as an indicator of a falls-predictive (pathological) gait.

Methods: WORM is calculated as the ‘figure-of-eight’ oscillation mapped out in the transverse-plane by the upper 
body’s centre-point during a walking bout. A sample of patients presenting to the Prince of Wales Hospital (Sydney, 
Australia) with a primary diagnosis of “falls for investigation” and age-matched healthy controls (non-fallers) from the 
community were recruited. Participants were fitted at the sternal angle with the wearable accelerometer, MetaMo-
tionC (Mbientlab Inc., USA) and walked unobserved (at self-selected pace) for 5-50 m along an obstacle-free, carpeted 
hospital corridor.

Results: Participants comprised of 16 fallers (mean age: 70 + 17) and 16 non-fallers (mean age: 70 + 9) based on a 
recent fall(s) history. The (median) WORM score was 17-fold higher (p < 0.001) in fallers (3.64 cm) compared to non-fall-
ers (0.21 cm). ROC curve analyses demonstrate WORM can discriminate fallers from non-fallers (AUC = 0.97). Diagnos-
tic analyses (cut-off > 0.51 cm) show high sensitivity (88%) and specificity (94%).

Conclusion: In this pilot study we have introduced the WORM score, demonstrating its discriminative performance 
in a preliminary sample size of 16 fallers. WORM is a novel gait metric assessing walking stability as measured by trun-
cal way during ambulation and shows promise for objective and clinical evaluation of fallers.
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Background
Although quantification is difficult, changes in gait pat-
terns are well-established and recognised in a variety of 
pathological conditions [1–4]. Traditionally gait analyses 
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are performed in two distinct settings, each with its own 
benefits and disadvantages. The first is the laboratory 
setting which is  typically objective with high accuracy 
but  may be limited by expense, time consumption, and 
specialised material [5–8]. Further, with such synthetic 
testing conditions there is speculation that patterns may 
not be reflective of true everyday functions. In contrast 
the clinical setting (health care professional observation) 
may allow the observer to match one of several pathog-
nomonic gait patterns, such as a Trendelenburg gait [9, 
10], or neurogenic claudicant gait [11] to specific pathol-
ogies but may be limited by the degree of finite data able 
to be collected and the time for assessing the subject.

Inertial measurement units (IMU’s), commonly known 
as ‘wearable devices’ (wearables), contain various micro-
electromechanical sensors (MEMS) including accelerom-
eters, gyroscopes and magnetometers. They have recently 
appeared as an alternative to the existing methods of gait 
assessment in the clinical setting [12, 13]. They are small, 
cheap, and marry the convenience of clinical assess-
ment with the accuracy and objectivity of laboratory gait 
assessment. Additionally, unlike both existing methods, 
wearables provide the ability to observe walking in the 
absence of an observer, such as a clinician, eliminating 
the presence of any ‘white coat effect’ in a laboratory or 
when studied by a clinician [14]. Greater conscious con-
trol of walking can result in a representation of ‘best per-
formance’ when observed  (rather than ‘free-living’ gait) 
with overestimated cadence and underestimated gait 
variability [15].

Current commercial wearables can accurately meas-
ure numerous gait metrics including gait velocity, stride 
length, stride time, cadence, and step count [12]. The 
latest generation of devices are now able to detect more 
nuanced features of the gait cycle including aberrant 
(variable or asymmetric) movements, exaggerated axial 
sway or range of joint motion [13]. Despite this, integra-
tion to the health setting has been limited, though poten-
tial utility is great. In addition to assessing disability and 
post-intervention recovery, wearable devices may also be 
useful in the identification of falls-risk patients [16].

Falls incur a significant disease burden annually, result-
ing in 695,771 deaths and a vast 35,940,787 disability-
adjusted life years (DALYs) lost globally during 2017 
[17]. Current falls-risk stratification strategies in clinical 
settings rely on structured questionnaires based on well-
established risk factors including falls history, sedative 
medications, altered psychological states and gait or bal-
ance disorders. However, clinical accuracy in identifying 
patients at high risk of falls has been found to be limited 
[18], with Chapman et al’s (2011) assessment of four com-
mon tools (including Morse Fall Scale and Hendrich II 
Fall Risk Model) demonstrating sensitivity to range from 

57.1–100% and specificity from 24.9–69.3% [19]. There is 
a clear need to implement more accurate falls prediction 
and prevention strategies, particularly leveraging recent 
wearable sensor capabilities.

Falls may be caused by an interplay between (patient-
related) intrinsic and (environmental) extrinsic risk 
factors [20–23]. Despite multiple causes, balance and 
gait abnormalities have been consistently identified in 
the literature as one of the primary causes [21, 24–26]. 
Objective studies of fallers’ gait has demonstrated spa-
tiotemporal alterations, with some of these variables 
such as gait velocity, cadence and stride length further 
explored for falls-classification [27, 28]. One hypothesis 
is that balance dysfunction and poor postural control 
account for inconsistent stepping patterns and therefore 
drive a greater gait variability [29, 30]. As a consequence 
the stride-to-stride variability of gait parameters have 
also been found to be useful [31], despite differing meas-
ures of standard deviation [32] or coefficient of variation 
being used to examine fall related gait behaviour [33, 34].

Previous wearable accelerometry studies of walk-
ing stability in fallers have assessed the smoothness and 
rhythm (variability) of acceleration patterns with the 
Lyapunov exponent [35, 36], autocorrelation coefficient 
[34, 37] and harmonic ratio [34, 38, 39]. Previous authors 
have typically considered balance in the mediolateral, 
vertical, and anteroposterior planes [34, 39–41]. Trunk-
based sensor-placement has been widely employed as it 
is most proximal to the centre of mass (COM) [33, 41, 
42]. Whilst most studies employed placement at the lum-
bar vertebrae [33, 39, 42], some have used chest-based 
sensor placement [41, 43].

The COM is calculated to lie a few centimetres ante-
rior to the lumbosacral joint [44], with most wearable 
sensor-based studies analysing COM motion opting for 
sensor-placement along the lumbar vertebrae [33, 39, 
42]. However, these lumbosacral approximations do not 
entirely reflect the movement of each individual body 
segment of ambulation (especially the upper limbs) 
which can largely influence COM motion and walking 
stability [45, 46]. We hypothesise that sensor placement 
in the midline (anterior) chest wall captures truncal and 
limb motion, providing a holistic measure of walking 
stability.

Indeed, chest-based sensor placement has been validated 
in the literature to provide reliable and accurate meas-
urement of postural [41, 47, 48] and spatiotemporal gait 
parameters [43, 49]. Chest-based sensor placement has also 
been previously used to measure truncal sway and assess 
ataxic gait [50, 51]. Previous studies have demonstrated 
fallers experience greater displacements and velocities 
of truncal sway in the anteroposterior and mediolateral 
planes [52]. However, an integrative approach combining 
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accelerometric, gyroscopic and magnetometry inputs 
to measure movement of the trunk’s centre-point in the 
transverse plane (i.e path lengths) has previously not been 
explored.

This technical description therefore aims to provide a 
standardised unit to assess walking stability and discrimi-
nate between fallers and non-fallers. Using a chest-based 
wearable device, we introduce a novel variable that quan-
tifies the transverse-plane motion of a subject’s trunk 
during walking – hereby referred to as the Walking Ori-
entation Randomness Metric (WORM).

Methods
Walking orientation randomness metric (WORM)
During walking, the summative motion of individual 
joint segments accelerates the trunk forwards of the base 
of support. With each step, the trunk also oscillates side-
to-side (about 46 mm), over each leg during its stance 
phase [53, 54]. Subtracting the average forward veloc-
ity of the body, shows the subjects’ trunk to therefore 
oscillate rhythmically left-right [45]. This lateral truncal 
displacement is pertinent from a clinical standpoint as 
lateral stability is ultimately compromised in many neu-
rological and orthopaedic pathologies [55].

To assess the stability of this inverted pendulum-
like motion during walking [56–58], the WORM score 
measures the ‘figure-of-eight’ motion of the upper body 
derived from a chest-based wearable device as shown in 
Fig.  1. The single-point IMU provides real-time quater-
nions that are subsequently converted to Euler angles. 
These three-dimensional angles are then used to calcu-
late the trajectory of the subject’s truncal sway (Eq. 1–3). 
We first calculate the point  pt at time step t from the ori-
entation of the body with respect the world frame, WR

B
t  . 

The body orientation, WR
B , is obtained from the orien-

tation measured by the single point IMU, W
⌣

R
S

t  , adjusted 
by a fixed sensor-to-body rotational offset, BRS

0 , as shown 
in Eq.  1. The sensor-to-body offset, BRS

0 , was calculated 
by assuming an upright pose (i.e., WR

B
0 = I3x3 ) at t = 0 as 

shown in Eq. 2. Finally, point  pt, which is effectively the 
x and y coordinates of the body z axis with centre at the 
origin, is calculated using Eq.  3 (the three-dimensional 
body orientation is projected in two-dimensions, the 
transverse plane). From point  pt,  WORMdist is calculated 
as the distance travelled in the transverse plane travel 
by  pt, (the length of the blue outline) measuring truncal 
motion during the walking bout (Fig. 1).
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This  WORMdist output is subsequently averaged to 
time walked and to distance walked to derive the final 
WORM Score (hereafter referred to simply as WORM). 
Thus, WORM measures the “figure-of-eight” motion of 
the trunk in the transverse plane, averaged per metre and 
per second of walking.

Study participants
The participants of this study were a sample of patients 
presenting to the Prince of Wales Hospital (Sydney, Aus-
tralia) with a primary diagnosis of “falls for investigation” 
in July–August 2020. During their acute hospital admis-
sion, study parameters and risks were discussed, and 
consent obtained. Participants lacking the ability to walk 
any distance without a form of support (walking stick 
or frame) were excluded. Participants with any form of 
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Fig. 1 Diagrammatic model of human body during walking. 
WORM score calculation reflects truncal motion as a measure of 
walking (in)stability.  WORMdist is calculated as the distance travelled 
in the transverse plane travel by p, (the length of the blue outline) 
measuring truncal motion during the walking bout. IMU = Inertial 
Measurement Unit, WORM = Walking Orientation Randomness Metric
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orthopaedic injury following their fall (for instance neck 
of femur fracture), that may exacerbate their gait dys-
function were also excluded. Included patients under-
went a semi-structured interview to obtain demographic 
information and assess eligibility. To be included in the 
“fallers” group, the fall must have been unrelated to a 
medication event and the patient must have intact bin-
ocular vision without concurrent visual pathologies. 
Age-matched “non-faller” controls were recruited from 
the community following a similar semi-structured inter-
view. Ethics for this study was obtained from the South 
Eastern Sydney Local Health District, with reference 
code 17/184.

Study design
A retrospective study design was used to group fallers, 
based on recent history of falls (in the week of commu-
nity ambulation preceding admission). A retrospective 
study design was opted for this pilot study due to the 
ethical concerns and technical difficulties of prospec-
tive long term community follow-up of ‘potential fallers’. 
Moreover, categorisation of faller status based on recent 
history of falls is reasonably justified by the fact that his-
tory of previous falls strongly predicts future falls [20, 21, 
59]. The authors of the study believed that, assuming no 
major injuries had been sustained from the high fall pop-
ulation that their inpatient gait patterns were reasonably 
reflective of their pre-fall pattern of ambulation. Controls 
were included to the non-fallers group, based on no pre-
vious history of falls and age-matching with participants 
of the fallers group.

Sample size calculations
Required sample size of 14 participants per group was 
calculated using the GPower 3.0 program to achieve at 
least 80% power given an effect size of 1. A recruitment 
target of at least 15 participants was therefore set for 
this preliminary study to account for any potential data 
losses.

Procedure
Prior to the walk, participants were fitted at the ster-
nal angle (Supplementary Materials - Appendix B) 
with an inertial measurement unit: the MetaMotion© 
(MMC) manufactured by Mbientlab Inc. (California, 
USA). In addition, patients wore a safety belt such that 
any fall during the subsequent walking event could 
be prevented by the 3 investigators who were in close 
proximity to the patient walking for safety. Following 
a short initial pause to orient the MMC device, par-
ticipants walked a self-selected distance (5–50 m) with 
(mean +/− standard deviation) distance walked by 
fallers being 17 +/− 18 m whilst non-fallers walked 49 

+/− 2.8 m. Participants walked as far as they could con-
sent to walk safely, at a self-selected pace along a 50 m 
unobstructed pathway on level ground. Trials were dis-
carded if the patient did (or could) not pause to orient 
the device, walk more than 5 m or required walking 
assistance during the bout.

Data processing
The MMC is a wearable sensor that involves data fusion 
(using a Kalman filter) from a 16 bit 100 Hz triaxial accel-
erometer, a 16 bit, 100 Hz triaxial gyroscope and a 0.3 μT, 
25 Hz triaxial magnetometer. Captured data is stored as 
a matrix of the values corresponding to each time point 
(100 captures per second) for up to 20 min of walking. 
For the purposes of this study, the MMC device recorded 
the entire walking trial, and the data captured was trans-
mitted via Bluetooth™ to an Android™ smartphone run-
ning the IMUGait Recorder application developed for 
this study (Supplementary Materials - Appendix B). The 
IMUGait Recorder application then uploaded the raw 
data to a centralised database where a modified version 
of Czech et  al’s open-source python program (IMU-
GaitPy program) was used to process the gait metrics for 
that walking trial [60], and visualise the WORM Score 
(Supplementary Materials - Appendix C). The MMC was 
used to measure truncal sway, and IMUGaitPy program 
was then used to calculate the Walking Orientation Ran-
domness Metric (WORM) score.

Statistical analysis
Data analyses were performed using Prism 9 (Graph-
Pad Software). Descriptive statistics were calculated for 
demographic variables including; age, gender, presence 
of diabetes and smoking. Spatiotemporal parameters of 
gait were calculated, and step (rather than stride) meas-
urements chosen for calculations of asymmetry and vari-
ation due to greater reliability [61]. Differences between 
fallers and non-fallers were calculated using unpaired 
two-tailed t-test. Welch’s correction was applied for vari-
ables with unequal variance and Mann Whitney U test 
used where non-normal distribution was present. Dis-
criminative ability was assessed using the area under the 
curve values of receiver operating characteristic curves 
for each gait metric. Accuracy values were interpreted 
as follows: 0.5 = test due to chance, 0.7–0.9 = moderate 
accuracy, 0.9–1.0 = very accurate, 1.0 = perfect test. Nor-
mality was assessed using Shapiro-Wilk tests and inspec-
tion of histograms. Statistical significance was considered 
with a p-value < 0.05.
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Results
Participant demographics
16 participants recruited as ‘fallers’ had a range of comor-
bidities including delirium, hip/knee osteoarthritis, 
lumbar radiculopathy, scoliosis, vestibular imbalance, 
cervical myelopathy, foot-drop and stroke-related hemi-
paresis. The 16 control participants recruited as ‘non-fall-
ers’ also had various comorbidities consistent with their 

age such as osteoarthritis of the spine and lower extremi-
ties, however had no history of falls. Demographic vari-
ables including age, gender ratios, smoking and diabetic 
status, body mass indices and height for these partici-
pants were not significantly different between fallers and 
non-fallers, with the exception of weight and daily step 
count (Table 1).

Spatiotemporal gait parameters
9 gait characteristics were measured across the four main 
gait domains of spatial, rhythm/temporal, asymmetry and 
variation metrics. 8 of these were significantly different 
between fallers and non-fallers (Table 2), and 7 of these 
remain significant following Bonferroni’s corrections 
(p = 0.05/13 = 0.0038) for multiple testing. Fallers have 
a typical gait pattern of significantly lower gait velocity 
(− 43%), step length (− 27%) and cadence (− 23%) signifi-
cantly increased  parameters include step time (+ 37%), 
step time asymmetry (+ 305%) and variability in terms of 
gait velocity (+ 114%), step time (+ 150%) and step length 
(+ 128%). Asymmetry in step length was not found to be 
significantly different (p = 0.080) in fallers.

The ability of these spatiotemporal parameters of 
gait to differentiate between fallers and non-fallers was 
assessed by statistically significant area under the curve 
(AUC) values of receiver operating characteristic (ROC) 
curves (Table  3). Good accuracy was found for most 
gait parameters with the highest accuracy found in gait 

Table 1 Demographic and clinical characteristics of fallers and 
non-fallers. P value represents statistical significance of difference 
between groups derived from Unpaired two-tailed t-test (Welch’s 
correction* applied if unequal variance), Mann Whitney U tests** 
(if non-normal distribution) or Fisher’s Exact  Test†. Significant 
findings are bolded

Fallers Non-Fallers P

N 16 16 n/a

Age (mean + SD, years) 70 + 17 70 + 9 0.609*

Gender ‘M’ (%) 8 (50) 10 (62.5) 0.722†

Height (mean + SD, cm) 168 + 10 174 + 11 0.154

Weight (mean + SD, kg) 73 + 19 88 + 21 0.042
BMI (mean + SD, kg/m2) 26 + 5.6 29 + 5.6 0.099

Smoking (%) 1 (6.25) 0 (0) n/a

Diabetes (%) 0 (0) 2 (12.5) n/a

Daily Step Count (mean 
+/− SD, steps)

650 + 540 4420 + 4050 < 0.001**

Table 2 Differences in gait parameters between Fallers and Non-Fallers. P value represents statistical significance of difference 
between groups derived from Unpaired two-tailed t-test, Welch’s corrected t-tests*, or Mann Whitney U tests**. WORM calculated as 
average distance (cm) per metre (mean/m) and per second (mean/s) of walking

CV% Coefficient of Variance* 100, WORM Walking Orientation Randomness Metric

Fallers Non-Fallers Between Group Differences (Fallers – Non-Fallers)

Mean + SD Mean / Median 
Difference

95% Confidence Interval Difference (%) P

Spatial Gait Metrics
Gait Velocity (m/s) 0.637 + 0.261 1.13 + 0.252 −0.489 −0.674 to − 0.304 −43% < 0.001
Step Length (cm) 45.3 + 13.6 62.0 + 13.7 −16.8 −26.6 to −6.90 −27% 0.002
Rhythm/Temporal Gait Metrics
Cadence (steps/min) 84.5 + 14.3 109 + 7.57 −24.8 −33.2 to −16.5 −23% < 0.001*
Step Time (ms) 757 + 139 554 + 38.7 203 127 to 279 + 37% < 0.001*
Gait Asymmetry
Step Time Asymmetry (ms) 191 + 108 47.1 + 26.6 144 85.3 to 202 + 305% < 0.001*
Step Length Asymmetry (cm) 13.4 + 8.65 8.10 + 3.42 2.8 −0.304 to 7.23 + 65% 0.080**

Gait Variability
Gait Velocity Variation (CV%) 15.2 + 7.01 7.09 + 2.17 8.08 4.09 to 12.1 + 114% 0.001
Step Time Variation (CV%) 18.9 + 8.63 7.53 + 3.71 11.3 6.26 to 16.4 + 150% 0.001
Step Length Variation (CV%) 23.9 + 14.6 10.5 + 4.52 13.4 5.11 to 21.7 + 128% 0.003
Gait Stability
WORM 3.64 ± 3.90 0.211 ± 0.171 2.49 1.01 to 3.61 + 1179% < 0.001**
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velocity (AUC = 0.91), step time (AUC = 0.94), asymme-
try in step time (AUC = 0.90), and variation in gait veloc-
ity (AUC = 0.90).

WORM scores
Walking stability according to WORM scores (cm/s) was 
significantly different (p < 0.001), being 17-fold higher 
(mean ± standard deviation) in fallers (3.64 ± 3.90) com-
pared to non-fallers (0.21 ± 0.17). These differences in 
WORM scores (as seen in Tables  2 and 3) show high 
accuracy (AUC = 0.97) in differentiating fallers from 
non-fallers with a sensitivity of 87.50% and specificity of 
93.75% when selecting the cut-off (WORM > 0.51 cm) 
with highest likelihood ratio (14.00).

Discussion
Through wearable accelerometry we have identified the 
relevant gait variables with high discriminative power 
in classifying fallers from non-fallers: gait velocity, step 
time, gait asymmetry (in step time) and gait variability (in 
gait velocity). Our identification of significantly different 
gait parameters in fallers largely aligns with existing find-
ings in literature such as reduced walking speed [27, 28, 
62], cadence [28, 62] and stride/step length [27, 62] with 
greater step time (in double support) [28], gait variability 
(in swing time) [28] and gait asymmetry [39, 62]. These 
gait deficits in the fallers group could be attributable to 
dysfunction of muscle strength, balance, propriocep-
tive physiology and/or disuse-related [63]. In this pilot 
study we have also introduced the WORM score, demon-
strating its discriminative performance in a preliminary 

sample size of 16 fallers, affirming clinical utility for fur-
ther research.

The novel gait metric investigated in the present study 
(WORM), assesses walking stability as measured by trun-
cal motion in the transverse-plane during walking. The 
rationale for WORM stems from existing theories sur-
rounding centre of mass (COM) motion [64–66] during 
ambulation, when considering the translation of the body 
system as a whole. Previous clinical studies and math-
ematical modelling suggests COM motion to undergo a 
closed figure-of-eight path (a ‘bow-tie’ shape), upwardly 
concaved in the frontal plane [65, 67–69]. Measurement 
of COM trajectory (especially its lateral motion) is thus 
clinically relevant to understanding and predicting falls, 
as they mostly occur towards the lateral direction [55].

WORM’s methodology provides an alternative to meas-
uring ‘COM’ at the lower lumbar vertebrae. We believe 
a chest-based sensor placement incorporates compen-
satory truncal inclinations and/or upper limb motions 
(that seek to offset pathological lower limb biomechan-
ics) in assessing walking stability. Greater truncal motion 
due to these compensatory gait alterations likely enabled 
discrimination of fallers from non-fallers via WORM in 
the present study. Our finding aligns with consensus in 
literature regarding truncal sway measurements offering 
useful information to distinguish gait abnormalities and 
fallers [70, 71].

The WORM calculation (averaged as mean per metre 
and per second of walking) was justified by Fukuchi et al’s 
recommendations when analysing pathological gait pat-
terns, to consider the confounding effects of higher gait 

Table 3 AUC values of ROC curves for gait parameters in discriminating between Fallers and Non-Fallers

AUC  Area under the curve, ROC Receiver Operating Characteristic, Std. Error Standard Error, CV% Coefficient of variance* 100, WORM Walking Orientation Randomness 
Metric

AUC Std. Error 95% Confidence Interval P

Upper Bound Lower Bound

Spatial Gait Metrics
Gait Velocity (m/s) 0.910 0.051 1.000 0.810 < 0.001

Step Length (cm) 0.801 0.079 0.955 0.647 0.004

Rhythm/Temporal Gait Metrics
Step Time (ms) 0.938 0.045 1.000 0.849 < 0.001

Gait Asymmetry
Step Time Asymmetry (ms) 0.902 0.060 1.000 0.787 0.001

Step Length Asymmetry (cm) 0.684 0.095 0.870 0.497 0.077

Gait Variability
Gait Velocity Variation (CV%) 0.904 0.056 1.000 0.794 0.001

Step Time Variation (CV%) 0.875 0.068 1.000 0.741 0.001

Step Length Variation (CV%) 0.825 0.079 0.981 0.670 0.002

Gait Stability
WORM 0.965 0.028 1.000 0.9108 < 0.001
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speeds increasing the amplitudes of spatiotemporal 
parameters, joint kinematics, joint kinetics, and ground 
reaction forces [72]. This is likely due to velocity-related 
changes in the total length of the figure-of-eight path due 
to shortening of its lateral oscillations [45]. As manifested 
in the present study, the relationship between truncal 
sway and gait velocity in older adults offers insight into 
differences between fallers and non-fallers [70]. Although 
truncal sway decreases with increased gait velocity in 
clinically normal gait according to Tesio et al. 2019 [45], 
this relationship likely ceases to exist in pathological gait 
thereby accounting for greater WORM scores in fallers.

The proposed method presents an objective, unsuper-
vised and unobtrusive method of point-of-care testing to 
assess walking stability and balance in both clinical and 
community settings. The WORM score provides clini-
cians, patients and carers with a quantification of walking 
instability serving as an accurate and sensitive biomarker 
for falls-risk. WORM may guide falls-preventative 
interventions in the elderly such as mobility assistance 
(walking aids), home modifications [73], alterations to 
medication regiments [74, 75], or physical therapy [76]. 
We have reported WORM scores for non-fallers versus 
fallers, however the intermediate scores between these 2 
points may provide further insight into fall-risk stratifica-
tion to guide these interventions. WORM may also serve 
clinical utility in minimising post-intervention falls in the 
community for example  when planning safe discharge, 
rehabilitation and home care [77].

A limitation of the present study would be the classi-
fication of faller status based on retrospective history 
(albeit recent in the preceding week). Although, classifi-
cation of faller status based on retrospective history can 
be justified by the fact prior history of falls strongly pre-
dicts future falls [20, 21, 59], future studies in prospective 
fallers may enable confirmation of ‘real-world’ falls-pre-
diction capabilities in community and at-home settings. 
Despite promising findings in this preliminary study, the 
sample size of 32 participants is a limitation. Moreover, 
accuracy and re-test reliability is unknown without future 
validation in larger external datasets. Moreover, chal-
lenges commonly faced by medical wearable devices such 
as battery life and missed communication (sensor failure 
and consequent data loss for one patient), were also expe-
rienced in the present study [78].

We have reported on a single aspect of walking insta-
bility (velocity of truncal sway) being sensitive and spe-
cific in our sample population of fallers. However, future 
research may consider the utility of path lengths and 
area of truncal sway. The discriminative performance of 
these WORM scores may vary among pathologies. Other 
avenues of research include: defining normative values of 
WORM depending on age and sex, leveraging artificial 

intelligence classification techniques (such as machine 
learning, deep neural learning) in future analyses and val-
idation in more specific pathological populations (knee/
hip osteoarthritis, multiple sclerosis, Parkinson’s disease).

Conclusion
In this pilot study we have also introduced the WORM 
score, demonstrating its discriminative performance 
in distinguishing high-risk falls patients from an age-
matched cohort of non-fallers. WORM is a novel gait 
metric assessing walking stability as measured by trun-
cal motion during ambulation and shows promise for 
falls prediction.
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